
IJSRST184925 | Received : 03 Sep 2018 | Accepted : 18 Sep 2018 | September-October -2018 [4 (10) : 123-133]

© 2018 IJSRST | Volume 4 | Issue 10 | Print ISSN : 2395-6011 | Online ISSN : 2395-602X
Themed Section: Science and Technology

 123

Dijikstra Algorithm In Google Map By Using Fuzzy Graph
M. Bharath Lavanya¹, T. Ramesh²

1PG Student,Department of Mathematics, Dr. SNS Rajalakshmi College of Arts and Science(Autonomous), Coimbatore,

Tamilnadu, India
2Assistant professor, Department of Mathematics, Dr. SNS Rajalakshmi College of Arts And Science(Autonomous),

Coimbatore, Tamilnadu, India

ABSTRACT

In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a

graph such that the sum of the weights of its constituent edges is minimized. The shortest path problem (SPP) is

one of the most important combinatorial optimization problems in graph theory due to its various applications.

In this paper we introduce the method of finding the shortest path in complete fuzzy graph of uncertainty by

using Dijikstra algorithm. To illustrate the effectiveness of the proposed approach we compare these results

with Google map and discuss the algorithm by Dijikstra which is most efficient for complete fuzzy graph for

uncertainty.

Keywords : Fuzzy Graph, Fuzzy Tree, Fuzzy Network, Fuzzy Sub-Trees.

I. INTRODUCTION

Graphs are a very important model of networks. There

are many real-life problems of network of

transportation, communication, circuit systems, and

so forth, which are modeled into graphs and hence

solved. Graph theory has wide varieties of applications

in several branches of engineering, science, social

science, medical science, economics, and so forth, to

list a few only out of many. In this paper we discuss

about fuzzy shortest route (path) between two cities

by using Dijikstra algorithm.

One of the main real life applications of dijikstra

algorithm is in Google Maps. Google map uses many

basic algorithms from Graph Theory. For example, to

find the shortest path between two nodes in a graph

in order to get driving directions. One unique

problem is that the graphs used in Google Maps

contain millions of nodes, but the algorithms have to

run in milliseconds. A technique used to improve

performance is graph hierarchies. Dijkstra algorithm is

used here and we compare the results with Google

map also we show importance of dijikstra algorithm in

Google map.

II. BASIC CONCEPTS

2.1. FUZZY GRAPH

A Fuzzy graph G= (σ, μ) is a pair of functions σ: V→

[0, 1] and μ: V×V→ [0, 1], where for all u, v∈ V, we

have μ (u, v) ≤ σ (u) Λ σ (v). A path P in a fuzzy graph

is a sequence of distinct nodes , , . . . , such

that μ (,) > 0; 1 ≤ i ≤ n; here n >1 is called the

length of the path P. The consecutive pairs

(,) are called the edge of the path.

2.2. NETWORK:

A Network consists of a set of nodes linked by arcs (or

branches). The notation for describing the network is

(N, A), where N is a set of nodes and A is the set of

arcs.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

M. Bharath Lavanya et al. Int. J. S. Res. Sci. Technol. 2018 September-October-2018; 4(10) : 123-133

124

2.3. PATH:

A Path is a sequence of distinct arcs that join two

nodes through other nodes regardless of the direction

of flow in each arc.

2.4. FUZZY TREE

A Fuzzy path between the point s (source) to t (sink)

of fuzzy graph G is called fuzzy policy or fuzzy tree.

III. DIJIKSTRA ALGORITHM

Let the node at which we are starting be called the

initial node. To find the path of minimum distance

between the point s(source) to t (sink) of fuzzy graph

G can be obtained using the following steps:

1. Identify the decision variables and specify

objective function to be optimized for fuzzy

networks.

2. Mark all nodes unvisited. Create a set of all the

unvisited nodes called the unvisited set.

3. Assign to every node a tentative distance value:

set it to zero for our initial node and to infinity

for all other nodes. Set the initial node as

current.

4. For the current node, consider all of its

unvisited neighbors and calculate their tentative

distances through the current node. Compare

the newly calculated tentative distance to the

current assigned value and assign the smaller

one. For example, if the current node A is

marked with a distance of 6, and the edge

connecting it with a neighbor B has length 2,

then the distance to B through A will be 6 + 2 =

8. If B was previously marked with a distance

greater than 8 then change it to 8. Otherwise,

keep the current value.

5. When we are done considering all of the

neighbors of the current node, mark the current

node as visited and remove it from the unvisited

set. A visited node will never be checked again.

6. Move to the next unvisited node with the

smallest tentative distances and repeat the above

steps which check neighbors and mark visited.

7. If the destination node has been marked visited

(when planning a route between two specific

nodes) or if the smallest tentative distance

among the nodes in the unvisited set is infinity

(when planning a complete traversal; occurs

when there is no connection between the initial

node and remaining unvisited nodes), then stop.

The algorithm has finished.

8. Otherwise, select the unvisited node that is

marked with the smallest tentative distance, set

it as the new "current node", and go back to step

3. When planning a route, it is actually not

necessary to wait until the destination node is

"visited" as above: the algorithm can stop once

the destination node has the smallest tentative

distance among all "unvisited" nodes (and thus

could be selected as the next "current")

IV. DIJIKSTRA ALGORITHM IN CONTEXT TO THE

PROBLEM

Consider a fuzzy network [1] and in this section we

discuss applicability of Dijikstra algorithm to find out

the shortest path between 21 cities of Tamilnadu.

Here we consider each city as vertex/node and the

distance between any two cities is represented as edge

or arc. In order to develop the above problem in terms

of fuzzy graph, the distance between any two cities [1]

is consider in the following manner.

Table 1

Distance in km Membership grades

50-75 0.02

75-100 0.04

100-125 0.06

125-150 0.08

150-175 0.1

175-200 0.12

200-225 0.14

225-250 0.16

250-275 0.18

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

M. Bharath Lavanya et al. Int. J. S. Res. Sci. Technol. 2018 September-October-2018; 4(10) : 123-133

125

Here the cities are represented by nodes in an

alphabetical order,

A-CHENNAI , B- CHENGALPATTU, C- VELLORE,

D- VILLUPURAM, E-THIRUVANAMALAI, F-

DHARMAPURI, G- PERAMBALUR, H- NAMAKAL,

I- ERODE, J- OOTY, K- THANJAVUR, L- TRICHY,

M- COIMBATORE , N- PUDUKOTTAI , O-

DINDUKAL, P- KODAIKANAL, Q-

RAMANATHAPURAM, R- MADURAI, S-

TUTICORIN, T- THIRUNELVELI and U-

KANYAKUMARI.

By using the city map of Tamilnadu we can able to

find the distance between two cities (fig 4.1) as

mentioned below,

Figure 1. Tamilnadu city map

In order to find the shortest path between two cities in terms of fuzzy graph , the distance between any two

cities are consider in the following manner:

Table 2

Chennai- Vellore-0.08

Chennai- Chengalpattu-0.02

Vellore- Villupuram-0.08

Chengalpattu-Villupuram-0.04

Chengalpattu – Thiruvanamalai-0.08

Vellore- Dharmapuri-0.1

Villupuram-Perambalur-0.06

Villupuram-namakkal-0.16

Thiruvanamalai-Perambalur-0.08

 Thiruvanamalai-Erode-0.14

Dharmapuri-Erode-0.06

Perambalur-Thanjavur-0.02

Perambalur-Trichi-0.02

Namakkal-Trichi-0.06

Erode-Trichi-0.1

Erode-Coimbatore-0.04

Ooty-Coimbatore-0.04

Thanjavur-Pudukottai-0.02

Trichi-Pudukottai-0.02

Trichi-Dindukal-0.06

Coimbatore-Dindukal-0.1

Coimbatore-Kodaikanal-0.1

Pudukottai-Ramanadhapuram-0.08

Pudukottai-Madurai-0.06

Dindukal-Madurai-0.02

Kodaikanal-Madurai-0.06

Ramanathapuram-Tuticurin-0.08

Ramanathapuram-Thirunelveli-0.1

Madurai-Tuticorin-0.08

Madurai-Thirunelveli-0.1

Tutucorin-Kanyakumari-0.08

Thirunelveli-Kanyakumari-0.04

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

M. Bharath Lavanya et al. Int. J. S. Res. Sci. Technol. 2018 September-October-2018; 4(10) : 123-133

127

V. FINDING SHORTEST PATH FROM

COIMBATORE TO KANYAKUMARI

From this fuzzy graph first let us first find the shortest

path from Coimbatore - Kanyakumari (i.e.) node M-U

by using dijikstra algorithm. Then the fuzzy graph

from Coimbatore – Kanyakumari [1](fig 4.2)is

mentioned below ,

Figure 2. Fuzzy graph from Coimbatore –

Kanyakumari with different routes

STEP1: Mark all nodes unvisited. Create a set of all the

unvisited nodes called the unvisited set.

Table 3

VERTEX SHORTEST

DISTANCE FROM

M

PREVIOUS

VERTEX

M

O

P

Q

R

S

T

U

Visited-[] Unvisited-[M, O, P, Q, R, S, T, U]

STEP 2: Assign to every node a tentative distance

value: set it to zero for our initial node and to infinity

for all other nodes. Set the initial node as current.

Table 4

VERTEX SHORTEST

DISTANCE

FROM M

PREVIOUS

VERTEX

M 0

O

P

Q

R

S

T

U

Visited-[] Unvisited-[M, O, P, Q, R, S, T, U]

Distance to M from M is 0

Distance to all other vertices from M is unknown,

therefore infinity.

STEP 3: For the current node, consider all of its

unvisited neighbors and calculate their tentative

distances through the current node. Compare the

newly calculated tentative distance to the current

assigned value and assign the smaller one. For the

current vertex, examine its unvisited neighbors. We

are currently visiting M and its unvisited neighbors

are O and P.

Figure 3

For the current vertex, calculate the distance of each

neighbor from the start vertex.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

M. Bharath Lavanya et al. Int. J. S. Res. Sci. Technol. 2018 September-October-2018; 4(10) : 123-133

128

Here M to O = 0.1

 M to P = 0.1

If the calculated distance of the vertex is less than the

known distance, update the shortest distance. Update

the previous vertex for each of the updated distance.

In this case we visited O and P via M

Table 5

VERTEX SHORTEST

DISTANCE FROM

M

PREVIOU

S VERTEX

M 0

O M

P M

Q

R

S

T

U

Now add the current vertex to the list of visited

vertices

Visited-[M] Unvisited-[O, P, Q, R, S, T, U]

STEP 4: Move to the next unvisited node with the

smallest tentative distances and repeat the above steps

which check neighbors and mark visited.

Therefore by step 4 we visit the unvisited vertex with

the smallest known distance from the start vertex, this

time is around either O or P because both are having

same tentative distance . Let as consider O,

Figure 4

We are currently visiting O and its unvisited

neighbors are Q and R.

Here O to Q = 0.1+ 0.06 = 0.16

 O to R = 0.1+0.02 = 0.12

If the calculated distance of the vertex is less than the

known distance, update the shortest distance. Update

the previous vertex for each of the updated distance.

In this case we visited Q and R via O

Table 6

VERTEX SHORTEST

DISTANCE FROM

M

PREVIOUS

VERTEX

M 0

O M

P M

Q O

R O

S

T

U

Now add the current vertex to the list of visited

vertices

Visited-[M, O] Unvisited-[P, Q, R, S, T, U]

STEP 5: Move to the next unvisited node with the

smallest tentative distances.

Here we visit the unvisited vertex with the smallest

known distance from the start vertex, this time is

around P.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

M. Bharath Lavanya et al. Int. J. S. Res. Sci. Technol. 2018 September-October-2018; 4(10) : 123-133

129

Figure 5

Here P to R = 0.1+0.06=0.16

If the calculated distance of the vertex is less than the

known distance, update the shortest distance. But

here the calculated distance(0.16) is greater than the

known distance(0.12),the known distance remain as it

is.

Table 7

VERTEX SHORTEST

DISTANCE FROM

M

PREVIOUS

VERTEX

M 0

O M

P M

Q O

R O

S

T

U

Now add the current vertex to the list of visited

vertices

Visited-[M, O, P] Unvisited-[Q, R, S, T, U]

STEP 6: Move to the next unvisited node with the

smallest tentative distances.

Here we visit R,

Figure 6

We are currently visiting R and its unvisited

neighbors are S and T.

Here R to S = 0.12+ 0.08 = 0.20

 R to T = 0.12+0.1 = 0.22

If the calculated distance of the vertex is less than the

known distance, update the shortest distance. Update

the previous vertex for each of the updated distance.

In this case we visited Sand T via R

Table 8

VERTEX SHORTEST

DISTANCE FROM

M

PREVIOUS

VERTEX

M 0

O M

P M

Q O

R O

S 0.20 R

T R

U

Now add the current vertex to the list of visited

vertices

Visited-[M, O, P, R] Unvisited-[Q, S, T, U]

STEP 7: Move to the next unvisited node with the

smallest tentative distances.

Here we visit Q,

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

M. Bharath Lavanya et al. Int. J. S. Res. Sci. Technol. 2018 September-October-2018; 4(10) : 123-133

130

Figure 7

We are currently visiting Q and its unvisited

neighbors are S and T.

Here Q to S = 0.16+ 0.08 = 0.2

 Q to T = 0.16+0.1 = 0.26

If the calculated distance of the vertex is less than the

known distance, update the shortest distance. Here for

the vertex S, calculated distance 0.24 is greater than

the known distance 0.20. So known distance(0.20) of

S remains same and also for the vertex T, calculated

distance 0.26 is greater than the known distance 0.22.

So known distance(0.22) of T remains same. In this

case we visited S and T via Q

Table 9

VERTEX SHORTEST

DISTANCE FROM

M

PREVIOUS

VERTEX

M 0

O M

P M

Q O

R O

S 0.20 R

T R

U

Now add the current vertex to the list of visited

vertices

Visited-[M, O, P, R, Q] Unvisited-[S, T, U]

STEP 8: Move to the next unvisited node with the

smallest tentative distances.

Here we visit S,

Figure 8

We are currently visiting S and its unvisited neighbors

is U.

Here S to U = 0.20+0.08 = 0.28

If the calculated distance of the vertex is less than the

known distance, update the shortest distance. In this

case we visited U via S

Table 10

VERTEX SHORTEST

DISTANCE FROM

M

PREVIOUS

VERTEX

M 0

O M

P M

Q O

R O

S 0.20 R

T R

U S

Now add the current vertex to the list of visited

vertices

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

M. Bharath Lavanya et al. Int. J. S. Res. Sci. Technol. 2018 September-October-2018; 4(10) : 123-133

131

Visited-[M, O, P, R, Q, S] Unvisited-[T, U]

STEP 9: Move to the next unvisited node with the

smallest tentative distances.

Here we visit T,

Figure 10

We are currently visiting T and its unvisited neighbor

is U.

Here T to U = 0.22+0.04 = 0.26

If the calculated distance of the vertex is less than the

known distance, update the shortest distance.

Therefore the calculated distance (0.26) is replaced

with the known distance (0.28). Update the previous

vertex for each of the updated distance. In this case

we visited U via T

Table 11

VERTEX SHORTEST

DISTANCE

FROM M

PREVIOUS

VERTEX

M 0

O M

P M

Q O

R O

S 0.20 R

T R

U T

Now add the current vertex to the list of visited

vertices

Visited-[M, O, P, R, Q, S, T] Unvisited-[U]

STEP 10: We are currently visiting U. We can’t able to

move to the next unvisited node with the smallest

tentative distances as there is no unvisited node.

Table 12

VERTEX SHORTEST

DISTANCE FROM

M

PREVIOU

S VERTEX

M 0

O M

P M

Q O

R O

S 0.20 R

T R

U T

Now add the current vertex to the list of visited

vertices

Visited-[M, O, P, R, Q, S, T, U] Unvisited-[]

Hence the algorithm stops until all nodes are visited.

Here the vertex U has the previous vertex T, vertex T

has the previous vertex R, vertex R has the previous

vertex O and vertex O has the previous vertex M.

Therefore we get the shortest path from M-U is M-O-

R-T-U.

VI. DIJIKSTRA ALGORITHM TABULAR FORM

REPRESENTATION FROM COIMBATORE

TO KANYAKUMARI

The following tabular column shows the shortest

distance between Coimbatore(M) to Kanyakumari(U):

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

M. Bharath Lavanya et al. Int. J. S. Res. Sci. Technol. 2018 September-October-2018; 4(10) : 123-133

132

Table 13

V M O P Q R S T U

M

O

P

R

Q

S

T

U

Here , , , ,

 , , , are all represent visited

nodes and represent unvisited nodes . Hence by this

we can find the shortest distance from Coimbatore to

Kanyakumari (i.e.) M to U. The vertex U has the

previous vertex T, vertex T has the previous vertex R,

vertex R has the previous vertex O and vertex O has

the previous vertex M. Here the shortest distance is

M-O-R-T-U = 0.26

Hence the shortest path is Coimbatore– Dindukkal–

Madurai– Thirunelveli- Kanyakumari=0.26.

VII. COMPARING THE RESULTS WITH

GOOGLE MAP

When we compare the results with Google map we

get the same shortest path, it is represented in the

figure 11

Figure 11. Google map direction from Coimbatore to

Kanyakumari

It shows the same path (i.e.)., Coimbatore- Dindukkal-

Madurai- Thirunelveli- Kanyakumari. Therefore we

come to know that Dijikstra algorithm plays a major

role in finding shortest path in Google map.

VIII. IMPORTANCE OF DIJIKSTRA

ALGORITHM IN GOOGLE MAP

Dijikstra algorithm is used to find the shortest path.

Google Maps does this for us now and we don't even

really think about what a complex task it could be.

Shortest path problems, a key feature of graph theory

with a whole lot of pretty obvious real-world

applications, get insanely deep very fast. The result is

known (informally) as a combinatorial explosion,

which is where the number of different combinations

that must be explored in a given problem grows

exponentially. The result of such an explosion is that

problems, like shortest path problems, grow so quickly

as to become practically incomputable, taking a

practically infinite amount of time to solve. It only

takes a handful of nodes in a given map or graph for

the number of possible combinations to push into the

billions, requiring vast and unreasonable amounts of

time. But here the Google map uses Dijikstra

algorithm and within a second it find the shortest

path between two cities.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

M. Bharath Lavanya et al. Int. J. S. Res. Sci. Technol. 2018 September-October-2018; 4(10) : 123-133

133

IX. CONCLUSION

In this paper we showed the efficiency of Dijikstra

algorithm in Google map and find out the value of

uncertain fuzzy shortest route among the cities from

Coimbatore to Kanyakumari by Bus is 0.26. The

results which are obtained for the given example

shows that Dijkstra Algorithm is very effective tool to

find the path with lowest cost from node A to node U.

Same results have been obtained also for Minimum

Spanning Tree by using Kruskal algorithm[1], but this

case the procedure is much simpler and easy.

X. REFERENCES

[1]. G. Nirmala & K. Uma – Shortest route algorithm

for fuzzy graph, International Journal of Scientific

and Research Publications, Volume 3, Issue 11,

November 2013 1 ISSN 2250-3153

[2]. Application of Graph Theory to find Optimal

Paths for the Transportation Problem- Rame

Likaja, Ahmet Shalaa and Mirlind Bruqi,

International Journal of Current Engineering and

Technology ISSN 2277 – 4106

[3]. An application of Dijkstra's Algorithm to shortest

route problem-Ojekudo, Nathaniel Akpofure

(PhD) 1& Akpan, Nsikan Paul (PhD), IOSR

Journal of Mathematics (IOSR-JM) e-ISSN: 2278-

5728, p-ISSN: 2319-765X. Volume 13, Issue 3 Ver.

1 (May.-June. 2017), PP 20-32

